Serveur d'exploration sur la télématique

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Kinetics of in vivo bone deposition by bone marrow stromal cells within a resorbable porous calcium phosphate scaffold: An X‐ray computed microtomography study

Identifieur interne : 001C04 ( Main/Exploration ); précédent : 001C03; suivant : 001C05

Kinetics of in vivo bone deposition by bone marrow stromal cells within a resorbable porous calcium phosphate scaffold: An X‐ray computed microtomography study

Auteurs : A. Papadimitropoulos [Italie] ; M. Mastrogiacomo ; F. Peyrin [France] ; E. Molinari [Italie] ; V. S. Komlev [Italie, Russie] ; F. Rustichelli [Italie] ; R. Cancedda

Source :

RBID : ISTEX:7FF314ADE34913112F52CA2D606B0F294772AF0A

Descripteurs français

English descriptors

Abstract

Resorbable ceramic scaffolds based on Silicon stabilized tricalcium phosphate (Si‐TCP) were seeded with bone marrow stromal cells (BMSC) and ectopically implanted for 2, 4, and 6 months in immunodeficient mice. Qualitative and quantitative evaluation of the scaffold material was performed by X‐ray synchrotron radiation computed microtomography (microCT) with a spatial resolution lower than 5 µm. Unique to these experiments was that microCT data were first collected on the scaffolds before implantation and then on the same scaffolds after they were seeded with BMSC, implanted in the mice and rescued after different times. Volume fraction, mean thickness and thickness distribution were evaluated for both new bone and scaffold phases as a function of the implantation time. New bone thickness increased from week 8 to week 16. Data for the implanted scaffolds were compared with those derived from the analysis of the same scaffolds prior to implantation and with data derived from 100% hydroxyapatite (HA) scaffold treated and analyzed in the same way. At variance with findings with the 100% HA scaffolds a significant variation in the density of the different Si‐TCP scaffold regions in the pre‐ and post‐implantation samples was observed. In particular a post‐implantation decrease in the density of the scaffolds, together with major changes in the scaffold phase composition, was noticeable in areas adjacent to newly formed bone. Histology confirmed a better integration between new bone and scaffold in the Si‐TCP composites in comparison to 100% HA composites where new bone and scaffold phases remained well distinct. Biotechnol. Bioeng. 2007; 98: 271–281. © 2007 Wiley Periodicals, Inc.

Url:
DOI: 10.1002/bit.21418


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Kinetics of in vivo bone deposition by bone marrow stromal cells within a resorbable porous calcium phosphate scaffold: An X‐ray computed microtomography study</title>
<author>
<name sortKey="Papadimitropoulos, A" sort="Papadimitropoulos, A" uniqKey="Papadimitropoulos A" first="A." last="Papadimitropoulos">A. Papadimitropoulos</name>
</author>
<author>
<name sortKey="Mastrogiacomo, M" sort="Mastrogiacomo, M" uniqKey="Mastrogiacomo M" first="M." last="Mastrogiacomo">M. Mastrogiacomo</name>
</author>
<author>
<name sortKey="Peyrin, F" sort="Peyrin, F" uniqKey="Peyrin F" first="F." last="Peyrin">F. Peyrin</name>
</author>
<author>
<name sortKey="Molinari, E" sort="Molinari, E" uniqKey="Molinari E" first="E." last="Molinari">E. Molinari</name>
</author>
<author>
<name sortKey="Komlev, V S" sort="Komlev, V S" uniqKey="Komlev V" first="V. S." last="Komlev">V. S. Komlev</name>
</author>
<author>
<name sortKey="Rustichelli, F" sort="Rustichelli, F" uniqKey="Rustichelli F" first="F." last="Rustichelli">F. Rustichelli</name>
</author>
<author>
<name sortKey="Cancedda, R" sort="Cancedda, R" uniqKey="Cancedda R" first="R." last="Cancedda">R. Cancedda</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:7FF314ADE34913112F52CA2D606B0F294772AF0A</idno>
<date when="2007" year="2007">2007</date>
<idno type="doi">10.1002/bit.21418</idno>
<idno type="url">https://api.istex.fr/document/7FF314ADE34913112F52CA2D606B0F294772AF0A/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">003909</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">003909</idno>
<idno type="wicri:Area/Istex/Curation">003909</idno>
<idno type="wicri:Area/Istex/Checkpoint">001232</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Checkpoint">001232</idno>
<idno type="wicri:doubleKey">0006-3592:2007:Papadimitropoulos A:kinetics:of:in</idno>
<idno type="wicri:source">PubMed</idno>
<idno type="RBID">pubmed:17657771</idno>
<idno type="wicri:Area/PubMed/Corpus">000425</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000425</idno>
<idno type="wicri:Area/PubMed/Curation">000425</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">000425</idno>
<idno type="wicri:Area/PubMed/Checkpoint">000425</idno>
<idno type="wicri:explorRef" wicri:stream="Checkpoint" wicri:step="PubMed">000425</idno>
<idno type="wicri:Area/Ncbi/Merge">000549</idno>
<idno type="wicri:Area/Ncbi/Curation">000549</idno>
<idno type="wicri:Area/Ncbi/Checkpoint">000549</idno>
<idno type="wicri:doubleKey">0006-3592:2007:Papadimitropoulos A:kinetics:of:in</idno>
<idno type="wicri:Area/Main/Merge">001C14</idno>
<idno type="wicri:Area/Main/Curation">001C04</idno>
<idno type="wicri:Area/Main/Exploration">001C04</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">Kinetics of in vivo bone deposition by bone marrow stromal cells within a resorbable porous calcium phosphate scaffold: An X‐ray computed microtomography study</title>
<author>
<name sortKey="Papadimitropoulos, A" sort="Papadimitropoulos, A" uniqKey="Papadimitropoulos A" first="A." last="Papadimitropoulos">A. Papadimitropoulos</name>
<affiliation wicri:level="1">
<country xml:lang="fr">Italie</country>
<wicri:regionArea>Dipartimento di Informatica, Sistemistica e Telematica, Università degli Studi di Genova, Genova</wicri:regionArea>
<wicri:noRegion>Genova</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Mastrogiacomo, M" sort="Mastrogiacomo, M" uniqKey="Mastrogiacomo M" first="M." last="Mastrogiacomo">M. Mastrogiacomo</name>
<affiliation>
<wicri:noCountry code="subField">+39‐0105737257</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Peyrin, F" sort="Peyrin, F" uniqKey="Peyrin F" first="F." last="Peyrin">F. Peyrin</name>
<affiliation wicri:level="3">
<country xml:lang="fr">France</country>
<wicri:regionArea>European Synchrotron Radiation Facility, BP 220, 38043 Grenoble Cedex</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Auvergne-Rhône-Alpes</region>
<region type="old region" nuts="2">Rhône-Alpes</region>
<settlement type="city">Grenoble</settlement>
</placeName>
</affiliation>
<affiliation wicri:level="3">
<country xml:lang="fr">France</country>
<wicri:regionArea>CREATIS, UMR CNRS 5515, Bat. Blaise Pascal, INSA, Lyon</wicri:regionArea>
<placeName>
<region type="region">Auvergne-Rhône-Alpes</region>
<region type="old region">Rhône-Alpes</region>
<settlement type="city">Lyon</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Molinari, E" sort="Molinari, E" uniqKey="Molinari E" first="E." last="Molinari">E. Molinari</name>
<affiliation wicri:level="1">
<country xml:lang="fr">Italie</country>
<wicri:regionArea>Dipartimento di Informatica, Sistemistica e Telematica, Università degli Studi di Genova, Genova</wicri:regionArea>
<wicri:noRegion>Genova</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Komlev, V S" sort="Komlev, V S" uniqKey="Komlev V" first="V. S." last="Komlev">V. S. Komlev</name>
<affiliation wicri:level="1">
<country xml:lang="fr">Italie</country>
<wicri:regionArea>Dipartimento di Scienze Applicate ai Sistemi Complessi, Universita' Politecnica delle Marche and CNISM, Via Breccee Bianche, Ancona</wicri:regionArea>
<wicri:noRegion>Ancona</wicri:noRegion>
</affiliation>
<affiliation wicri:level="3">
<country xml:lang="fr">Russie</country>
<wicri:regionArea>Institute for Physical Chemistry of Ceramics, Russian Academy of Sciences, Ozernaya, Moscow</wicri:regionArea>
<placeName>
<settlement type="city">Moscou</settlement>
<region>District fédéral central</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Rustichelli, F" sort="Rustichelli, F" uniqKey="Rustichelli F" first="F." last="Rustichelli">F. Rustichelli</name>
<affiliation wicri:level="1">
<country xml:lang="fr">Italie</country>
<wicri:regionArea>Dipartimento di Scienze Applicate ai Sistemi Complessi, Universita' Politecnica delle Marche and CNISM, Via Breccee Bianche, Ancona</wicri:regionArea>
<wicri:noRegion>Ancona</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Cancedda, R" sort="Cancedda, R" uniqKey="Cancedda R" first="R." last="Cancedda">R. Cancedda</name>
<affiliation>
<wicri:noCountry code="subField">+39‐0105737257</wicri:noCountry>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">Biotechnology and Bioengineering</title>
<title level="j" type="abbrev">Biotechnol. Bioeng.</title>
<idno type="ISSN">0006-3592</idno>
<idno type="eISSN">1097-0290</idno>
<imprint>
<publisher>Wiley Subscription Services, Inc., A Wiley Company</publisher>
<pubPlace>Hoboken</pubPlace>
<date type="published" when="2007-09-01">2007-09-01</date>
<biblScope unit="volume">98</biblScope>
<biblScope unit="issue">1</biblScope>
<biblScope unit="page" from="271">271</biblScope>
<biblScope unit="page" to="281">281</biblScope>
</imprint>
<idno type="ISSN">0006-3592</idno>
</series>
<idno type="istex">7FF314ADE34913112F52CA2D606B0F294772AF0A</idno>
<idno type="DOI">10.1002/bit.21418</idno>
<idno type="ArticleID">BIT21418</idno>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0006-3592</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Absorbable Implants</term>
<term>Animals</term>
<term>Biocompatible Materials (chemistry)</term>
<term>Bone Substitutes (chemistry)</term>
<term>Calcium Phosphates (chemistry)</term>
<term>Cell Differentiation</term>
<term>Cells, Cultured</term>
<term>Guided Tissue Regeneration (methods)</term>
<term>Kinetics</term>
<term>Materials Testing</term>
<term>Mesenchymal Stromal Cells (cytology)</term>
<term>Mesenchymal Stromal Cells (radiography)</term>
<term>Mice</term>
<term>Mice, Nude</term>
<term>Osteoblasts (cytology)</term>
<term>Osteoblasts (radiography)</term>
<term>Osteogenesis (physiology)</term>
<term>Porosity</term>
<term>Sheep</term>
<term>Tissue Engineering (methods)</term>
<term>Tomography, X-Ray Computed (methods)</term>
<term>bone substitute</term>
<term>bone tissue engineering</term>
<term>synchrotron MicroCT</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Animaux</term>
<term>Cellules cultivées</term>
<term>Cellules stromales mésenchymateuses ()</term>
<term>Cellules stromales mésenchymateuses (cytologie)</term>
<term>Cinétique</term>
<term>Différenciation cellulaire</term>
<term>Implant résorbable</term>
<term>Ingénierie tissulaire ()</term>
<term>Matériaux biocompatibles ()</term>
<term>Ostéoblastes ()</term>
<term>Ostéoblastes (cytologie)</term>
<term>Ostéogenèse (physiologie)</term>
<term>Ovis</term>
<term>Phosphates de calcium ()</term>
<term>Porosité</term>
<term>Régénération tissulaire guidée ()</term>
<term>Souris</term>
<term>Souris nude</term>
<term>Substituts osseux ()</term>
<term>Test de matériaux</term>
<term>Tomodensitométrie ()</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Biocompatible Materials</term>
<term>Bone Substitutes</term>
<term>Calcium Phosphates</term>
</keywords>
<keywords scheme="MESH" qualifier="cytologie" xml:lang="fr">
<term>Cellules stromales mésenchymateuses</term>
<term>Ostéoblastes</term>
</keywords>
<keywords scheme="MESH" qualifier="cytology" xml:lang="en">
<term>Mesenchymal Stromal Cells</term>
<term>Osteoblasts</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Guided Tissue Regeneration</term>
<term>Tissue Engineering</term>
<term>Tomography, X-Ray Computed</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Ostéogenèse</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Osteogenesis</term>
</keywords>
<keywords scheme="MESH" qualifier="radiography" xml:lang="en">
<term>Mesenchymal Stromal Cells</term>
<term>Osteoblasts</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Absorbable Implants</term>
<term>Animals</term>
<term>Cell Differentiation</term>
<term>Cells, Cultured</term>
<term>Kinetics</term>
<term>Materials Testing</term>
<term>Mice</term>
<term>Mice, Nude</term>
<term>Porosity</term>
<term>Sheep</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Animaux</term>
<term>Cellules cultivées</term>
<term>Cellules stromales mésenchymateuses</term>
<term>Cinétique</term>
<term>Différenciation cellulaire</term>
<term>Implant résorbable</term>
<term>Ingénierie tissulaire</term>
<term>Matériaux biocompatibles</term>
<term>Ostéoblastes</term>
<term>Ovis</term>
<term>Phosphates de calcium</term>
<term>Porosité</term>
<term>Régénération tissulaire guidée</term>
<term>Souris</term>
<term>Souris nude</term>
<term>Substituts osseux</term>
<term>Test de matériaux</term>
<term>Tomodensitométrie</term>
</keywords>
</textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Resorbable ceramic scaffolds based on Silicon stabilized tricalcium phosphate (Si‐TCP) were seeded with bone marrow stromal cells (BMSC) and ectopically implanted for 2, 4, and 6 months in immunodeficient mice. Qualitative and quantitative evaluation of the scaffold material was performed by X‐ray synchrotron radiation computed microtomography (microCT) with a spatial resolution lower than 5 µm. Unique to these experiments was that microCT data were first collected on the scaffolds before implantation and then on the same scaffolds after they were seeded with BMSC, implanted in the mice and rescued after different times. Volume fraction, mean thickness and thickness distribution were evaluated for both new bone and scaffold phases as a function of the implantation time. New bone thickness increased from week 8 to week 16. Data for the implanted scaffolds were compared with those derived from the analysis of the same scaffolds prior to implantation and with data derived from 100% hydroxyapatite (HA) scaffold treated and analyzed in the same way. At variance with findings with the 100% HA scaffolds a significant variation in the density of the different Si‐TCP scaffold regions in the pre‐ and post‐implantation samples was observed. In particular a post‐implantation decrease in the density of the scaffolds, together with major changes in the scaffold phase composition, was noticeable in areas adjacent to newly formed bone. Histology confirmed a better integration between new bone and scaffold in the Si‐TCP composites in comparison to 100% HA composites where new bone and scaffold phases remained well distinct. Biotechnol. Bioeng. 2007; 98: 271–281. © 2007 Wiley Periodicals, Inc.</div>
</front>
</TEI>
<affiliations>
<list>
<country>
<li>France</li>
<li>Italie</li>
<li>Russie</li>
</country>
<region>
<li>Auvergne-Rhône-Alpes</li>
<li>District fédéral central</li>
<li>Rhône-Alpes</li>
</region>
<settlement>
<li>Grenoble</li>
<li>Lyon</li>
<li>Moscou</li>
</settlement>
</list>
<tree>
<noCountry>
<name sortKey="Cancedda, R" sort="Cancedda, R" uniqKey="Cancedda R" first="R." last="Cancedda">R. Cancedda</name>
<name sortKey="Mastrogiacomo, M" sort="Mastrogiacomo, M" uniqKey="Mastrogiacomo M" first="M." last="Mastrogiacomo">M. Mastrogiacomo</name>
</noCountry>
<country name="Italie">
<noRegion>
<name sortKey="Papadimitropoulos, A" sort="Papadimitropoulos, A" uniqKey="Papadimitropoulos A" first="A." last="Papadimitropoulos">A. Papadimitropoulos</name>
</noRegion>
<name sortKey="Komlev, V S" sort="Komlev, V S" uniqKey="Komlev V" first="V. S." last="Komlev">V. S. Komlev</name>
<name sortKey="Molinari, E" sort="Molinari, E" uniqKey="Molinari E" first="E." last="Molinari">E. Molinari</name>
<name sortKey="Rustichelli, F" sort="Rustichelli, F" uniqKey="Rustichelli F" first="F." last="Rustichelli">F. Rustichelli</name>
</country>
<country name="France">
<region name="Auvergne-Rhône-Alpes">
<name sortKey="Peyrin, F" sort="Peyrin, F" uniqKey="Peyrin F" first="F." last="Peyrin">F. Peyrin</name>
</region>
<name sortKey="Peyrin, F" sort="Peyrin, F" uniqKey="Peyrin F" first="F." last="Peyrin">F. Peyrin</name>
</country>
<country name="Russie">
<region name="District fédéral central">
<name sortKey="Komlev, V S" sort="Komlev, V S" uniqKey="Komlev V" first="V. S." last="Komlev">V. S. Komlev</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Ticri/CIDE/explor/TelematiV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001C04 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001C04 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Ticri/CIDE
   |area=    TelematiV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     ISTEX:7FF314ADE34913112F52CA2D606B0F294772AF0A
   |texte=   Kinetics of in vivo bone deposition by bone marrow stromal cells within a resorbable porous calcium phosphate scaffold: An X‐ray computed microtomography study
}}

Wicri

This area was generated with Dilib version V0.6.31.
Data generation: Thu Nov 2 16:09:04 2017. Site generation: Sun Mar 10 16:42:28 2024